Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(4): e0231830, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32302352

RESUMO

Renal anemia is predominantly caused by a relative deficiency in erythropoietin (EPO). Conventional treatment for renal anemia includes the use of recombinant human EPO (rhEPO) or a long-acting erythropoiesis-activating agent named darbepoetin alfa, which is a modified rhEPO with a carbohydrate chain structure that differs from native hEPO. We have developed a biosimilar to darbepoetin alfa designated JR-131. Here, we comprehensively compare the physicochemical and biological characteristics of JR-131 to darbepoetin alfa. JR-131 demonstrated similar protein structure to the originator, darbepoetin alfa, by peptide mapping and circular dichroism spectroscopy. Additionally, mass spectroscopic analyses and capillary zone electrophoresis revealed similar glycosylation patterns between the two products. Human bone marrow-derived erythroblasts differentiated and proliferated to form colonies with JR-131 to a similar degree as darbepoetin alfa. Finally, JR-131 stimulated erythropoiesis and improved anemia in rats similarly to darbepoetin alfa. Our data show the similarity in physicochemical and biological properties of JR-131 to those of darbepoetin alfa, and JR-131 therefore represents a biosimilar for use in the treatment of renal anemia.


Assuntos
Medicamentos Biossimilares/farmacologia , Darbepoetina alfa/farmacologia , Eritropoese/efeitos dos fármacos , Anemia/tratamento farmacológico , Animais , Células CHO , Cricetinae , Cricetulus , Darbepoetina alfa/química , Modelos Animais de Doenças , Eletroforese Capilar , Glicosilação/efeitos dos fármacos , Rim/patologia , Masculino , Peso Molecular , Nefrectomia , Mapeamento de Peptídeos , Estrutura Secundária de Proteína , Ratos Sprague-Dawley , Açúcares/análise , Resultado do Tratamento
2.
Biomed Pharmacother ; 64(4): 296-301, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20347568

RESUMO

A new multifunctional gene delivery system was constructed with diphtheria toxin's functional domains. Used functional domains are T domain for endosomal escape and R domain for efficient internalization into cell. In order to conjugate these domains into PEI polyplex, diphtheria toxin T and R domains-streptavidin fusion protein (DTRS) was prepared. The conjugation of the DTRS with biotinylated PEI polyplex (DTRS-polyplex) lead to the significant enhancement of transfection efficiency when compared with plain PEI/pDNA polyplex in CHO-K1 cell. It was demonstrated that DTRS-polyplex had high endosomal escape efficiency and internalization efficiency by several measurements, such as in vitro intracellular trafficking observation and the internalization inhibition with several inhibitors. These results suggest that this multifunctional non-viral vector may contribute to the future cancer gene therapy.


Assuntos
Toxina Diftérica/química , Técnicas de Transferência de Genes , Polietilenoimina/química , Transfecção/métodos , Animais , Transporte Biológico , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , DNA/administração & dosagem , Toxina Diftérica/metabolismo , Endossomos/metabolismo , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Espaço Intracelular/metabolismo , Plasmídeos , Polietilenoimina/metabolismo
3.
Biomaterials ; 30(3): 402-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18930314

RESUMO

The endosomal escape is a well-known serious obstacle for non-viral gene delivery. This is because of an acidic and enzymatic degradation of the contents of the endosome/lysosome. Therefore, the internalized gene needs to be efficient released into the cytosol to obtain the efficiently transfection efficiency. On the other hand, the diphtheria toxin T domain fuses with endosome membrane by pH decrease, then enhances the endosomal escape of the diphtheria toxin C fragment. In this study, we constructed diphtheria toxin T domain-conjugated poly(ethylenimine)s (PEI) polyplex for enhancing the endosomal escape of exogenous gene. The conjugation of diphtheria toxin T domain with PEI/pDNA polyplex leads to the significant enhancement of transfection efficiency when compared with plain PEI/pDNA polyplex. The pH-responsive increase in hydrophobicity of the diphtheria toxin T domain might not only trigger the perturbation of the endocytic vesicle membrane but might also increase the membrane permeability.


Assuntos
Toxina Diftérica/química , Toxina Diftérica/metabolismo , Endossomos/metabolismo , Vetores Genéticos/genética , Polietilenoimina/metabolismo , Transfecção/métodos , Animais , Transporte Biológico , Biotinilação , Células COS , Permeabilidade da Membrana Celular , Chlorocebus aethiops , Endocitose , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Lipossomos/metabolismo , Estrutura Terciária de Proteína , Estreptavidina/metabolismo , Frações Subcelulares/metabolismo
4.
J Control Release ; 120(3): 242-9, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17574290

RESUMO

In order to enhance the internalization of exogenous gene and add cell specificity to non-viral vectors, receptor-binding elements have been widely utilized to mimic the virus infection. Herein, for the purpose of intensifying the effects of the ligand on gene delivery, dual receptor-binding elements, transferrin (Tf) and transforming growth factor alpha (TGFalpha), were introduced into the polyethyleneimine polyplex. The transfection and internalization efficiency by dual Tf- and TGFalpha-introduced polyplex (Tf&TGFalpha-polyplex) was examined in A549 and CHO-K1 cells, respectively. In A549, Tf&TGFalpha-polyplex had higher transfection efficiency when compared to that by single Tf- or TGFalpha-introduced polyplex (Tf-polyplex and TGFalpha-polyplex), respectively, while no enhancement was observed in CHO-K1. Moreover, in A549, the internalization efficiency of dual Tf&TGFalpha-polyplex was higher than that of single Tf- and TGFalpha-polyplex. In contrast, in CHO-K1, no difference in internalization efficiency was observed. In the presence of excess free transferrin or TGFalpha, the internalization efficiency of Tf&TGFalpha-polyplex was strongly inhibited only in A549, not in CHO-K1. In summary, the enhancement of internalization efficiency by dual ligands is an important factor for improving transfection efficiency. In addition, the effect of dual ligands depends on cell species; receptor-mediated and efficient internalization may be related to this enhanced transfection efficiency.


Assuntos
Técnicas de Transferência de Genes , Iminas/química , Polietilenos/química , Transferrina/farmacologia , Fator de Crescimento Transformador alfa/farmacologia , Animais , Biotinilação , Células CHO , Bovinos , Linhagem Celular Tumoral , Cricetinae , Cricetulus , DNA/química , DNA/metabolismo , Receptores ErbB/metabolismo , Genes Reporter , Vetores Genéticos , Humanos , Iminas/metabolismo , Ligantes , Luciferases/metabolismo , Peso Molecular , Polietilenos/metabolismo , Receptores da Transferrina/metabolismo , Soroalbumina Bovina/metabolismo , Transfecção
5.
Carbohydr Res ; 342(11): 1427-33, 2007 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-17548066

RESUMO

A chitosan derivative, 6-amino-6-deoxy chitosan (6ACT), was galactosylated and was investigated as a gene carrier. A series of galactose-modified 6ACT (Gal-6ACT) with degrees of substitution (d.s.) ranging from 3% to 50% per pyranose were prepared by reductive alkylation with lactose. DNA retardation assays showed that the electrostatic interaction between Gal-6ACT and plasmid DNA was not changed by galactose modification up to 50% per pyranose of 6ACT. Gal-6ACT with a d.s. of 38% was bound to galactose-recognizing lectin, RCA120. A significant increase in transfection efficiency for HepG2 cells was observed at degree of substitutions ranging from 18% to 50% and at N/P values ranging from 1.5 to 2.5. Under optimum conditions, Gal-6ACT showed about 10 times higher efficiency than 6ACT. However, a slight uptake by the galactose receptors on hepatocytes was observed by flow cytometric analysis. Moreover, Gal-6ACT with a d.s. of 38% mediated efficient gene transfer into both A549 and HeLa cells lacking the galactose receptor. These results suggest that the enhancement of transfection efficiency of Gal-6ACT was not due to the increase of receptor-mediated cellular uptake. In addition, the enhanced gene transfer efficiency was not specific to the galactose modification because the efficiency of glucose-modified 6ACT for HepG2 cells was similar as that of Gal-6ACT.


Assuntos
Carcinoma Hepatocelular/metabolismo , Quitosana/análogos & derivados , DNA/metabolismo , Portadores de Fármacos , Galactose/metabolismo , Neoplasias Hepáticas/metabolismo , Transfecção , Animais , Células COS , Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Quitosana/química , Quitosana/metabolismo , Chlorocebus aethiops , DNA/genética , Galactose/genética , Células HeLa , Humanos , Neoplasias Hepáticas/química , Neoplasias Hepáticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...